• Intra- vs Intermolecular Photoinduced Electron Transfer Reactions of a Macrocyclic Donor-Acceptor Dyad
    E.G. Moore, P.V. Bernhardt, A. Fürstenberg, M.J. Riley and E. Vauthey
    Journal of Physical Chemistry A, 109 (51) (2005), p11715-11723
    DOI:10.1021/jp0547414 | unige:3263 | Abstract | Article HTML | Article PDF
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraazacyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2]2+ (Chart 1). By contrast, Stern−Volmer analysis of intermolecular quenching of [ZnL2]2+ by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.
  • Time-Resolved Spectroscopy of the Metal-to-Metal Charge Transfer Excited State in Dinuclear Cyano-Bridged Mixed-Valence Complexes
    B.P. Macpherson, P.V. Bernhardt, A. Hauser, S. Pagès and E. Vauthey
    Inorganic Chemistry, 44 (15) (2005), p5530-5536
    DOI:10.1021/ic0506512 | unige:3275 | Abstract | Article HTML | Article PDF
Visible pump−probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [LCoIIINCMII(CN)5]-, where L is a pentadentate macrocyclic pentaamine (L14) or triamine-dithiaether (L14S) and M is Fe or Ru. Nanosecond pump−probe spectroscopy on frozen solutions of [L14CoIIINCFeII(CN)5]- and [L14SCoIIINCFeII(CN)5]- at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350−400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [L14CoIIINCRuII(CN)5]- was too short-lived to allow its detection. Femtosecond pump−probe spectroscopy on aqueous solutions of [L14CoIIINCFeII(CN)5]- and [L14SCoIIINCFeII(CN)5]- at room temperature enabled the lifetimes of their CoII−FeIII MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.
  • Tuning the Photophysical Behavior of Luminescent Cyclam Derivatives by Cation Binding and Excited State Redox Potential
    E.G. Moore, P.V. Bernhardt, A. Fürstenberg, M.J. Riley, T.A. Smith and E. Vauthey
    Journal of Physical Chemistry A, 109 (17) (2005), p3788-3796
    DOI:10.1021/jp044221t | unige:3276 | Abstract | Article HTML | Article PDF
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L1) and 6-((anthracen-9-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2]2+, the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1]2+, the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.
  • Rates of Electronic Energy Transfer in Conformationally Flexible Bichromophoric Macrocyclic Complexes: A Combined Experimental and Molecular Modeling Study
    E.G. Moore, P.V. Bernhardt, A. Pigliucci, M.J. Riley and E. Vauthey
    Journal of Physical Chemistry A, 107 (41) (2003), p8396-8403
    DOI:10.1021/jp035781f | unige:3509 | Abstract | Article HTML | Article PDF
 
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)2 and [ZnL4b](ClO4)2 were determined by time-resolved fluorescence where L4a and L4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (kEET) of 8.7 × 108 s-1, whereas that of the cis isomer is significantly faster (2.3 × 109 s-1). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by 1H NMR for the [ZnL4a]2+ trans complex in the common trans-III N-based isomer gave a calculated Förster rate constant close to that observed experimentally. For the [ZnL4b]2+ cis complex, the experimentally determined rate constant may be attributed to a combination of trans-III and trans-I N-based isomeric forms of the complex in solution.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024